Regionalportal und Internetzeitung für Pressemeldungen!

 

Erfolgreiche Bor-Dotierung von Graphen-Nanoband

Physikern der Universität Basel ist es gelungen, mit Bor-Atomen dotierte Graphen-Nanobänder herzustellen und ihre elektronischen und chemischen Eigenschaften zu beschreiben. Das modifizierte Material könnte potenziell als Sensor für umweltschädliche Stickstoffoxide eingesetzt werden, berichten die Wissenschaftler in der neusten Ausgabe von Nature Communications.

Graphen ist eines der vielversprechendsten Materialien für die Verbesserung elektronischer Geräte. Das zweidimensionale Kohlenstoffblatt weist eine hohe Elektronenmobilität auf und hat entsprechend ausgezeichnete Leitfähigkeiten. Im Gegensatz zu gewöhnlichen Halbleitern fehlt dem Stoff jedoch die sogenannte Bandlücke, ein Energiebereich in einem Festkörper, in welchem keine Elektronenzustände existieren können. Folglich kommt darin kein Zustand vor, in dem das Gerät elektronisch völlig ausgeschaltet ist. Um effiziente elektronische Schalter aus Graphen herzustellen, muss es aber auch an- und ausgeschaltet werden können.

Graphen NanobandDie Lösung für dieses Problem liegt darin, das Kohlenstoffblatt in eine band-artige Form zu trimmen. Dadurch kann es so verändert werden, dass es eine Bandlücke aufweist, deren Wert von der Breite des Nanobands abhängt.
Graphen-Nanoband unter dem Mikroskop
Graphen-Nanoband unter dem Mikroskop (© Universität Basel)

Synthese auf Goldoberfläche

Um die Bandlücke anzupassen und Graphen-Nanobänder (engl. graphene nanoribbons, GNR) wie einen bewährten Silikon-Halbleiter funktionieren zu lassen, werden die Bänder dotiert. Dabei führen die Forscher vorsätzlich Unreinheiten in ein vollkommen reines Material ein, um seine elektrische Eigenschaften abzustimmen. Während Stickstoff-Dotierung bereits umgesetzt wurde, blieb die Bor-Dotierung bisher unerforscht und die entstehenden elektronischen und chemischen Eigenschaften entsprechend unklar.

Prof. Dr. Ernst Meyer und Dr. Shigeki Kawai des Departements Physik der Universität Basel, unterstützt von Forschern von japanischen und finnischen Universitäten, gelang es, Bor-dotierte Graphen-Nanobänder von unterschiedlicher Breite herzustellen. Dazu benutzten sie eine chemische Oberflächenreaktion mit einem eigens dafür synthetisierten Vorgängermolekül auf einer atomar reinen Goldoberfläche. Die chemischen Strukturen wurden mit modernster Rasterkraftmikroskopie bei niedriger Temperatur bestimmt.

Auf dem Weg zum Stickstoffoxid-Sensor

Die einzelnen Bor-Atome konnten eindeutig lokalisiert werden und der Dotierungs-Anteil – die Anzahl Bor-Atome relativ zu der Gesamtmenge an Atomen innerhalb des Nanobands – lag bei 4,8 Atomprozent. Durch die Dosierung von Stickstoffmonoxid konnte die als Lewis-Säure bekannte chemische Eigenschaft nachgewiesen werden.

Das Stickstoffmonoxid wurde von der Bor-Stelle hoch-selektiv absorbiert. Dies weist darauf hin, dass Bor-dotierte Graphen-Nanobänder als ultra-hochsensible Gassensoren für Stickstoffoxide, welche in der Industrie wegen ihrer stark umweltschädlichen Eigenschaften ein aktuelles Thema sind, eingesetzt werden könnten.

Quelle: Unibas
Originalbeitrag
S. Kawai, S. Saito, O. Oshima, S. Yamaguchi, A. S. Foster, P. Spiker, and E. Meyer
Atomically controlled substitutional boron-doping of graphene nanoribbons
Nature Communications, 6. 8098 (2015), doi: 10.1038/ncomms9098


Weitere Auskünfte
Prof. Dr. Ernst Meyer, Universität Basel, Departement Physik, Tel. +41 61 267 37 24, E-Mail: Diese E-Mail-Adresse ist vor Spambots geschützt! Zur Anzeige muss JavaScript eingeschaltet sein!

Kommentare powered by CComment

Wohnen am Hochrhein - Hans Thoma Blick ©Gerald Kaufmann
Jun 21, 2018 11722

Immobilien am Hochrhein

Das Topthema seit langen Zeiten ist das Wohnen zwischen Basel und Konstanz. Wohnen und…
rakete sceene
Aug 09, 2017 15794

Web-Content & Web-System

Joomla und andere Content Management Systeme stehen für Einfachheitaber auch für…
Megaphone
Aug 23, 2018 49289

Ihr Artikel bei uns!

Weit gestreute Pressetexte und Inhalte bleiben im Trend. Schließlich kann man die Wege,…

Wir nutzen Cookies auf unserer Website. Einige von ihnen sind essenziell für den Betrieb der Seite, während andere uns helfen, diese Website und die Nutzererfahrung zu verbessern (Tracking Cookies). Sie können selbst entscheiden, ob Sie die Cookies zulassen möchten. Bitte beachten Sie, dass bei einer Ablehnung womöglich nicht mehr alle Funktionalitäten der Seite zur Verfügung stehen.